Ascl3 transcription factor marks a distinct progenitor lineage for non-neuronal support cells in the olfactory epithelium
نویسندگان
چکیده
The olfactory epithelium (OE) is composed of olfactory sensory neurons (OSNs), sustentacular supporting cells, and several types of non-neuronal cells. Stem and progenitor cells are located basally, and are the source of all cell types needed to maintain OE homeostasis. Here, we report that Ascl3, a basic helix-loop-helix transcription factor, is expressed in the developing OE. Lineage tracing experiments demonstrate that the non-neuronal microvillar cells and Bowman's glands are exclusively derived from Ascl3+ progenitor cells in the OE during development. Following chemically-induced injury, Ascl3 expression is activated in a subset of horizontal basal cells (HBCs), which repopulate all microvillar cells and Bowman's glands during OE regeneration. After ablation of Ascl3-expressing cells, the OE can regenerate, but lacks the non-neuronal microvillar and Bowman's gland support cells. These results demonstrate that Ascl3 marks progenitors that are lineage-committed strictly to microvillar cells and Bowman's glands, and highlight the requirement for these cell types to support OE homeostasis.
منابع مشابه
Progenitor cells of the olfactory receptor neuron lineage.
The olfactory epithelium of the mouse has many properties that make it an ideal system for studying the molecular regulation of neurogenesis. We have used a combination of in vitro and in vivo approaches to identify three distinct stages of neuronal progenitors in the olfactory receptor neuron lineage. The neuronal stem cell, which is ultimately responsible for continual neuron renewal in this ...
متن کاملSox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional kno...
متن کاملIn vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis.
In the adult mammalian brain, new neurons and glia are continuously generated but molecular factors regulating their differentiation and lineage relationships are largely unknown. We show that Ascl1, a bHLH (basic helix-loop-helix) transcription factor, transiently labels neuronal and oligodendrocyte precursors in the adult brain. Using in vivo lineage tracing with inducible Cre recombinase, we...
متن کاملMash1 activates a cascade of bHLH regulators in olfactory neuron progenitors.
The lineage of olfactory neurons has been relatively well characterized at the cellular level, but the genes that regulate the proliferation and differentiation of their progenitors are currently unknown. In this study, we report the isolation of a novel murine gene, Math4C/neurogenin1, which is distantly related to the Drosophila proneural gene atonal. We show that Math4C/neurogenin1 and the b...
متن کاملImmunohistological and electrophysiological characterization of Globose basal stem cells
Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...
متن کامل